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Abstract

This paper is concerned with the numerical prediction of two- and three-dimensional transitional separated flows of turbomachinery
interest. The recently proposed single-point transition model based on the use of a laminar kinetic energy transport equation is consid-
ered, insofar as it does not require to evaluate any integral parameter, such as boundary-layer thickness, and is thus directly applicable to
three-dimensional flows. A well established model, combining a transition-onset correlation with an intermittency transport equation, is
also used for comparison. Both models are implemented within a Reynolds-averaged Navier—Stokes solver employing a low-Reynolds-
number k— turbulence model. The performance of the transition models have been evaluated and tested versus well-documented incom-
pressible flows past a flat plate with semi-circular leading edge, namely: tests T3L2, T3L3, T3L5, and T3LA1 of ERCOFTAC, with
different Reynolds numbers and free-stream conditions, the last one being characterized by a non-zero pressure gradient. In all compu-
tations, the first model has proven as adequate as or superior to the second one and has been then applied with success to two more
complex test cases, for which detailed experimental data are available in the literature, namely: the two- and three-dimensional flows

through the T106 linear turbine cascade.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Laminar-turbulent transition plays a crucial role in
many flows of engineering interest; in particular, the flow
through a low-pressure turbine or a compressor is highly
influenced by transition, which has a remarkable impact
on losses and heat transfer. Therefore, modeling transition
correctly is essential to improve the performance of modern
turbomachinery, and is a very challenging task for state-of-
the-art CFD codes, transition being a highly non-linear
phenomenon which involves a wide range of scales.

In general, depending on the pressure gradient and the
free-stream turbulence intensity, three main transition
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mechanisms can be observed (Mayle, 1991). The first one
(natural transition) begins with a weak instability in the
laminar boundary-layer and then progresses by the ampli-
fication of Tollmien—Schlichting waves; the second one,
commonly encountered in turbomachinery flows, bypasses
the previous instability mechanism due to the large distur-
bances in the outer flow region (bypass transition); the third
one is referred to as separated-flow transition, insofar as it
occurs within a separated boundary layer, and may or may
not experience a natural growth mechanism.

The basic mechanism of boundary-layer transition
under different flow conditions can be studied using direct
numerical simulations and large eddy simulations for mod-
erate values of the Reynolds number (Re). However, due to
their high computational costs, such techniques are not
applicable to high-Re complex turbomachinery flows. In
such cases, numerical models based on the solution of the
Reynolds-averaged Navier—Stokes (RANS) equations are


mailto:l.cutrone@cira.it
mailto:depalma@poliba.it
mailto:pascazio@poliba.it
mailto:napolita@poliba.it

L. Cutrone et al. | Int. J. Heat and Fluid Flow 29 (2008) 504-526 505

Nomenclature

¢ chord

Cr skin friction coefficient, t,,/(1/2u? p..)

D dissipation term, source term

f damping function

H specific total enthalpy

K acceleration parameter, (v/u*)(du/dx)

k turbulence kinetic energy

n spot generation rate

n nondimensional spot generation rate

P production term

p pressure

2 total pressure

Rey momentum  thickness Reynolds number,
(Ou) /v

S source term, magnitude of mean strain-rate-ten-
SOT, +/ 2S,‘jS,‘j

Sij strain-rate-tensor components

s pitch
time

Tu turbulence intensity, 100+/2k/3uZ

U specific total internal energy

u velocity magnitude

u;,u;  velocity components

Uno local free-stream velocity

Uin inlet velocity

X curvilinear coordinate

y* (Vattc) /v

Vn normal distance to wall

Y intermittency factor

0 boundary-layer thickness

0jj Kroneker delta

& turbulence dissipation rate

0 momentum thickness

A length scale

At turbulence length scale

i molecular viscosity

Ut eddy viscosity

v 1/ p

VT pr/p

0 density

o Emmons spot propagation parameter

Ty stress-tensor components

w specific  dissipation rate, loss coefficient,
(P — P/ (Pa — P2)

Q magnitude of mean rotation tensor, /2€2;;€;;

Qi mean rotation tensor components

Subscripts

ax axial

in inlet

is isentropic

L laminar

1 large scale

le leading-edge

s small scale

T turbulent

t onset of transition

00 free-stream

still warranted. On the other hand, in spite of the efforts of
several researchers aimed at developing low-Reynolds-
number turbulence models with some built-in transition
modeling capability, i.e., models based on either non-linear
eddy viscosity methods (Craft et al., 1997; Chen et al.,
1998) or Reynolds-stress transport equations (Haniali¢
et al., 1997), to-date RANS methods have been proven
inadequate for predicting the transition under general flow
conditions (Savill, 2002; Westin and Henkes, 1997; De
Palma, 2002; De Palma, 2006).

It is then clear that a more specific transition model
has to be developed and implemented, e.g., a model
based on the intermittency factor, which represents the
fraction of time the flow is turbulent (Mayle, 1991).
Several methods have been proposed to compute such
an intermittency factor, which are based on empirical
algebraic correlations (Mayle, 1991; Michelassi et al.,
1999) or on the solution of an additional transport
equation (Cho and Chung, 1992; Suzen and Huang,
2000; Steelant and Dick, 1996; Vicedo et al., 2004).
One disadvantage of these intermittency-type models is
that they rely on empirical correlations based on non-

local parameters for the transition-onset prediction, such
as boundary-layer displacement or momentum thickness,
which are strictly two-dimensional concepts, and thus
are difficult to evaluate in complex geometries. A fur-
ther difficulty is encountered in transitional flows with
a separation bubble, when transition may occur either
in the attached- or separated-flow region; e.g., in the
case of the interaction of an unsteady upstream wake
with the boundary-layer in high-lift low-pressure turbine
cascades (Hodson and Howell, 2005), where intermit-
tency transport models need two different transition-
onset criteria (Lodefier and Dick, 2005; Suzen and
Huang, 2005). Finally, even if the intermittency factor
is well modeled, computing transitional flows by multi-
plying it times the eddy viscosity coefficient could still
produce considerable errors in the calculations of the
shear stresses (Mayle, 1991).

Therefore, a more general method, that can be applied
to a wide range of flow conditions as well as to three-
dimensional geometries, is needed to improve the design
of advanced turbomachinery. In this context, pre-transi-
tional boundary-layer fluctuations, induced by the free-
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stream turbulence in bypass transitional flows, are recog-
nized to play a fundamental role in the definition of ade-
quate models (Mayle and Schulz, 1997; Volino, 2005;
Lardeau et al., 2007; Praisner and Clark, 2007). In partic-
ular, following the approach proposed by Mayle and
Schulz (1997) to compute the turbulence kinetic energy in
the transitional region, Lardeau et al. (2004) and Lardeau
and Leschziner (2006) proposed a means to combine the
low-Reynolds-number explicit algebraic Reynolds-stress
model of Abe et al. (2003) with an intermittency-type
approach using a transport equation for the laminar kinetic
energy equation. However, such a model, which again
employs an algebraic correlation for evaluating the inter-
mittency factor and a second correlation for detecting the
transition onset, still suffers from the aforementioned inter-
mittency-approach drawbacks. Therefore, Walters and
Leylek (2004) provided a single-point transition model,
independent of the intermittency factor: following Mayle
and Schulz (1997), they model the pre-transitional
stream-wise boundary-layer fluctuations induced by the
free-stream turbulence by introducing an additional trans-
port equation for the laminar kinetic energy, which deter-
mines the transition-onset and/or length without any
need for nonlocal parameters.

Given the state-of-the-art described above, it seems
useful and worthwhile to evaluate the performance of tran-
sition models versus well-documented flows, with particu-
lar attention to turbomachinery applications. In a recent
paper, Cutrone et al. (2007) have combined six state-of-
the-art transition models with the low-Reynolds-number
k — o turbulence model (Wilcox, 1998), to compute three
incompressible flows past flat plates as well as a two-dimen-
sional flow past a turbine cascade, all without separation.
Five models combine a transition-onset correlation with
an intermittency factor prediction, the sixth one being the
novel single-point model of Walters and Leylek (2004).
Although none of the models was found fully satisfactory,
the last one was capable of simulating two-dimensional
attached bypass transitional flows as well as, or even better
than, the most satisfactory among the others, namely the
Suzen and Huang (2000) model.

In this work, the code developed by Cutrone et al. (2007)
is used at first to evaluate the two aforementioned models
versus well-documented two-dimensional separated flows
past a flat plate with semi-circular leading edge, namely,
tests T3L2, T3L3, T3L5, and T3LA1 of ERCOFTAC, with
different Reynolds numbers and free-stream conditions, the
last one being characterized by a non-zero pressure gradi-
ent. The model of Walters and Leylek (2004) again per-
formed as well as, or even better than, that of Suzen and
Huang (2000), resulting the most suitable model for pre-
dicting turbomachinery-flow transition; therefore, it has
been applied to compute the two-dimensional flow through
the T106 linear turbine cascade. Finally, the code of Cut-
rone et al. (2007) has been extended to three-dimensional
flows and applied to evaluate the Walters and Leylek
(2004) transition model versus the complex three-dimen-

sional flow through the same T106 linear turbine cascade,
for which detailed experimental data are available in the
literature.

After a brief description of the governing equations, the
two transition models are described in detail, whereas the
numerical method is only outlined. The test problems are
then described together with the numerical results. Finally,
some brief conclusions are drawn.

2. Reynolds-averaged Navier—Stokes equations

The Reynolds-averaged Navier-Stokes (RANS) equa-
tions are written in terms of Favre mass-averaged variables
and coupled with the low-Reynolds-number & — w turbu-
lence model

a#—g/(ﬂ%‘):oy (1)
a(g;li) + 6%, (puju;) = — S_f, + Zil]j , (2)
6(gtU) + a% (pu;H)
:aixj Uity + (M+0*Hr)§7kj—qj]7 (3)

aaL;k) + 6%] (pusk) = Tz:fg_z; = B pwk

bt o], @
a(gtw) + 62, (pujo) = Of)fijgxuj ~ Bpo?

+aaxj {(u+om)2zj- (5)

U and H are the specific total energy and enthalpy compre-
hensive of the turbulence kinetic energy, k; the eddy viscos-
ity, pr, is defined in terms of k& and of the specific
dissipation rate, w, according to the £ — w turbulence mod-
el of Wilcox (1998),

. pk
= 6
pr=o' (6)

and w is limited by the realizability constraint of Durbin
(1996)

1
(1/0.09),/3/(85%)

w =max | o,

Moreover, 1;; indicate the sum of the molecular and Rey-

nolds (t;) stress-tensor components. According to the
Boussinesq approximation, one has

Ou; Ou; 2 Ouy 2

P 511 _
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o, Pk @



L. Cutrone et al. | Int. J. Heat and Fluid Flow 29 (2008) 504-526 507

Finally, the heat flux vector components, g;, are given as

_ _(#, )\ Ok

where Pr = 0.71 and Prr = 0.9 are the laminar and turbu-
lent Prandtl numbers, respectively. Sutherland’s law is used
to compute the molecular viscosity coefficient and the clo-
sure coefficients of the low-Reynolds-number £ — w model
are given as (Wilcox, 1998)

. o+ Rer/Ry 5 oy + Rer/R, ok
o =

= = B — R = —
1 + Rer/R;’ * 9o 1+ Rer/R,’ er ou’

9 5/18+ (Rer/Ry)"

p e N
= s =, g = 0=,
100 1+ (Rer/Ry)* 40 2
1
(18 :E oy = R/f = 87 Rk == 6, Rw = 27

3’ 10’

3. Laminar-turbulent transition

This section provides a detailed description of: (i) the
main transition model employed in the present work (Walt-
ers and Leylek, 2004), which does not rely on the intermit-
tency factor concept but is a single-point transition model
based on a transport equation for the laminar kinetic
energy; (ii) the Suzen and Huang (2000) model, combining
a correlation for predicting the transition onset with an
intermittency transport model, which is wused for
comparison.

3.1. The Walters and Leylek model

This model was originally proposed by Walters and Ley-
lek (2004, 2005) and has been proven effective in computing
two-dimensional attached bypass transitional flows (Cut-
rone et al., 2007). The model, called here M1, is based on
an eddy viscosity coefficient, determined by using three
transport equations for the turbulence kinetic energy, k,
the laminar kinetic energy, £, and the specific dissipation
rate, w, respectively

%;k) + ai;j (pujk) = pPi + pR — pe — pDr
sl o

% + ai;j (pujkr) = pPy — pR — pDyr

o(pw)

0 w
j = Pu) C(u —R - Cw ’

;N\ 4/3
Jeit\ 7 Vk
+ prZ,fw ort (ﬁ) _3
AT Ya

0 por\ 0w
fag )5 "

Egs. (9)—(11) substitute the equations of the original turbu-
lence model, namely, Egs. (4) and (5), respectively. The
laminar kinetic energy is associated with the non-turbulent
stream-wise fluctuations in the pre-transitional boundary
layer, defined in the work of Mayle and Schulz (1997).
The effective length scale, A, is the minimum length scale
of the fluctuations contributing to the production of these
non-turbulent perturbations by means of the splat mecha-
nism described by Walters and Leylek (2005) and Volino
(1998). It is estimated as

ieff = 1’1’1i1”l(C’)Lyn7 )“T)a (12)

where C;, = 2.495, it :k3/2/£ is the turbulence length
scale, ¢ = wk is the turbulence dissipation rate, and y, is
the distance from the nearest wall. The turbulence kinetic
energy can be divided into small-scale energy, krs, and
large-scale energy, kr,, as follows:

ko = k(e /i), ey = k|1 = G/ 7)) (13)

the former interacts with the mean-flow as a typical turbu-
lence energy, whereas the latter only contributes to the pro-
duction of 4.

The first term in the right-hand side of Eq. (9) is the tur-
bulence production due to turbulent fluctuations

Ou; Ou; 2 Ouy ou; 2 Ouy,
Py vy (s NS 2y G 14
k= Vs <6xj + Oox; 3 Oxg ”) ox; 3 krs xy (14)

J

where the small-scale viscosity, vr;, is defined as

2-58TOT>
s )
In the equation above, C, is the turbulent viscosity coeffi-
cient, taken to be 0.09 in fully turbulent regions, and f,
and fint are damping functions used to impose near-wall
viscous effects and to prevent the overprediction of
momentum near completion of the bypass transition,

respectively. The functional forms of these coefficients are
given as (Walters and Leylek, 2004, 2005)

/Rers &
f!t =1- €Xp ( °r. )7 ReT.s = J:a

VTs = min (ﬁLfINT C,u. kT7s;Leff> (1 5)

A, = 6.75;
4, *

ﬁNT = min ( CINT =0.75.

k 1)
Cintkror” )’

In Egs. (9) and (11), the turbulence scalar diffusivity is de-
fined as

oT :f;tc,u\/];ieffv (16)
and
or=1, o,=1.17.

The first term in the right-hand side of Eq. (10) is the pro-
duction of the laminar kinetic energy due to large-scale tur-
bulent fluctuations,

Ou; Ou; 2 Ouy >% 2 Qu

PkL:VTJ(&j"‘ra—xi—ga—xk ij 6xj_§kT’16_xk' (17)
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The large-scale viscosity, vr,, is defined as

2
QiCH> V kT,l/leffv 05SkT1:| ) (18)

where f;, is a time-scale-based damping function (Walters
and Leylek, 2004)

z 2
7C‘L’J ( “ >
T
with

1 / Leff

Tn = =,

0 T = rT‘l ,

The term R in Eqgs. (9)—(11) represents the effect of the
stream-wise fluctuations on turbulence during bypass
transition,

vt = min [fwcu <

fu=1—exp

Cn=34x10"° C,; =4360.

A
R == CRﬁBPkLw(A_T)7 (19)
eff

where fipp is a threshold function defined as

$pp
= 1 — _——
BP eXp ( Agp )’

¢BP = max [(ﬁ . — CBP,crit> ) O] ; (20)

v

and the closing coefficients read
Cr=0.05, App =3, Cppeir =12.

The terms Dt and Dy in Egs. (9) and (10) are the turbulent
and laminar near-wall dissipation terms, respectively, given
as (Walters and Leylek, 2004)

ovkovk ) ovk vk

Dy =2 .
Ty A Tt Ox;  Ox;

(1)

According to these definitions, the total dissipation rate of
the fluctuation energy, ¢ror, 1s defined as the sum of the dis-
sipation rate of turbulence, ¢, and of the near-wall dissipa-
tion terms, Dt and D;..

The production term P, in Eq. (11) takes the form

Py =2 v, (2 O 20m s NOu 2, O
o — 2 wl | VT,w axj axi 3 axk ij ax/ 3 T,s axk )
(22)

where C,,; = 0.44 and
VT w = f;LfINTCll vV kT,sj-eff

corresponds to the small-scale unlimited viscosity in Eq.
(15). The coefficients C, and C,; in Eq. (11) are computed
as

2\ 23 y 4/3
cwR—l.s(;> —1 and cw2—0.92<j“) . (23)

Aeff AT

The influence of turbulent and laminar fluctuations on the
mean-flow and energy equations is accounted for by defin-

ing a total eddy viscosity which is used to model the Rey-
nolds-stress tensor as
au,- au,

—puu; = v — +
puiu; TOT <6xj ox,

; 2
3% 5::/) — 3 Pkrordy,  (24)

where VTOT = VTs -+ VT and kTOT =k -+ kL = kT,s -+ kT$|+
kr.

3.2. The Suzen and Huang model

This model, called here M2, combines a transition-onset
correlation with an intermittency transport model so as to
replace the eddy viscosity coefficient y in Egs. (3)—(8) with
the product yur, y being the intermittency factor.

Two transition-onset correlations are employed, being
suitable for attached- and separated-flow transition,
respectively: the onset is triggered when either condition
is satisfied.

The transition-onset for attached flow has been pro-
posed by Suzen et al. (2002) for evaluating the transition-
onset point on the basis of the corresponding value of
the Reynolds number based on the boundary-layer
momentum thickness, Rey,

Reg, = (120 + 150Tu,. ) coth[4(0.3 — |Kpin| x 10%)].  (25)

le

In the equation above, K, indicates the smallest value of
the pressure gradient parameter K, = (v /62 )(dus /dx) in
the deceleration region, evaluated at the local edge of the
boundary-layer. According to the correlations provided
by Mayle (1991), the maximum value for |K | is 3 x 107°.

The base mechanism of the separated-flow transition
has been described in detail by Mayle (1991), see Fig. 1,
which provides a sketch of the time-averaged transition
region. After flow separation, there is a low-pressure gradi-
ent region (upstream region) followed by a pressure recov-
ery (downstream region). The upstream region is composed
of a laminar shear flow, between the abscissae x; (separa-
tion) and x, (transition-onset), and a transition region
between the abscissae x; and xt (end of transition). In the
downstream region, the flow is turbulent and reattaches

<+ Downstream
region

Upstream region

pressure fistribution

Transition  Turbulent

- T

———
Bubble (_'b

X X X, X

Bubble elevation and
pressure distribution

E flow E

Fig. 1. Schematic of separated-flow transition.
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at x,. Separation bubble experiments have also shown that
decreasing the free-stream turbulence level increases the

IR

iy

‘\“‘\‘:‘\‘“&\\\\\\Q:\“‘::‘\“‘“‘Q\‘Q&“\\\‘é
\

iy
R

Fig. 2. T3L test case: computational domain and partial view of the grid
at the leading-edge region.

size of the separation bubble and delays transition (Malkiel
and Mayle, 1996).

Here, the transition-onset in separated flows is evaluated
by means of the correlation proposed by Mayle (1991)
using different set of experimental data

(Re,)y = 1000Rey”, (26)
where

s — As 505
(Rex)st = M? Rey, = ”v ) (27)

us, 05, and vs being the free-stream velocity, the momentum
thickness and the kinematic viscosity at the separation
point. Provided that such values are known, Egs. (26)
and (27) allow one to evaluate the distance between the
transition-onset point and the separation one, x; — x;.

The intermittency transport model used here is that pro-
posed by Suzen and Huang (2000): it combines the inter-
mittency factor transport equation models of Steelant
and Dick (1996), based on the correlation of Dhawan
and Narasimha (1958) and Cho and Chung (1992), using

Table 1 a blending function to predict both the experimentally
T3L test cases: flow conditions at 6 mm observed stream-wise intermittency variations and the cor-
Case U (m/s) Re Tuo (%) rect behaviour in the cross-stream direction. The transport
T3L2 5 3293 0.632 equation for the intermittency factor, y, reads
T3L3 5 3293 2.31 o ; d
u;)
T3LS 2.5 1647 2.30 opy) + pwy) _ D, +S,, (28)
6[ axj
where D, is the diffusion term, namely,
Table 2 5 5
T3L test cases: inlet boundary conditions Y
: Dy =5 { [(1=)yo,u+ (1 =)0, ] a} (29)
Case tin (m/s)  Tuin (%)  Argn (mm) A7, (Mm)  Arexp (mm) Xj X
T3L2 4.798 1.08 2.54 4.00 4.72 and
T3L3 4.798 3.90 8.91 13.7 13.91
T3L5  2.387 3.90 8.77 135 13.0 S, = (1=9p)[(1 =F)To+F(T, — Ty)] + Ts, (30)
T 1T T T N L N L N L N T 1T T T N T 1T T T N T 1T T T N L
5 0.0065 — \ —
= L i
oy L i
& L o J
£ L — Model M1 |
‘; ---- Model M2
e 0.006 — o  Exp. data B
= L A
= L i
E . |
<
S 00055 - —
§ - -
& L A
0.005 —
i 1 1 1 1 l 1 1 1 1 l 111 1 l 111 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 ]
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

x coordinate, [m]

Fig. 3. T3L2 test case: free-stream turbulence intensity decay.
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— 04906, ¢ =0204("7) -

where F is the blending function. The first term, T, derives _ 50 no b
from the model of Steelant and Dick (1996), a= u’

~1s
Ty = Copy/uti(x), Bl)  d=0, e=0.04444 (%) . =50, = 10e.
where ff(x) = 2f(x)f’(x) and the function f'(x) is the follow- (33)
ing polynomial interpolation function for ic(Re, — Re, )’

around the transition-onset point, x, (Steelant and Dick,  Eq. (31) is based on the following correlation of Dhawan
1996) and Narasimha (1958) for the intermittency distribution

3 along the flow direction
a4 ex? +dd +e

f(x) o 1

, (D1 exploiio(Re, - Re, ). B34

with ¥’ = x — x;, and where x is the curvilinear coordinate along the wall, Re, =
UsX[Voo, 1 =mV? Ju? is the nondimensional production

0.024 rrrr|rrrrrrrrrrrrrr T Tt

NN — Model M1
0.023 NG --=- Model M2
r E o  Exp. data b

0.022 —

0.021 —

0.02 —

0.019 —

0.018 —

Freestream turbulence intensity Tu

0.017 — —

0.016 po v b b b v b v b v b by
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

x coordinate, [m]

Fig. 4. T3L3 test case: free-stream turbulence intensity decay.

0.024

0.0235
0.023
0.0225
0.022
0.0215
0.021

— Model M1
o ° ---- Model M2
o Exp. data

0.0205
0.02
0.0195
0.019

Freestream turbulence intensity Tu

0.0185
0.018

[S)

T[T [T [T T T T T [T [T [T T [ TIT I TITI T

0.0175
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0.017 co v b b v b b v b v b by
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

x coordinate, [m]

Fig. 5. T3L5 test case: free-stream turbulence intensity decay.
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Table 3
Test cases T3L: separation, reattachment, and transition-onset points
expressed in mm

Case M1 M2 PR99

Xs Xr Xto Xs Xr Xto Xs Xr Xto
T3L2 4.70 289 18.0 4.70 27.0 24.0 4.66 29.1 24.1
T3L3 4.80 27.7 17.0 4.70 28.0 21.0 4.85 27.6 21.7
T3L5 5.00 40.0 41.0 5.10 39.8 38.1 500 383 41.6

rate parameter of the turbulent spots, v is the kinematic vis-
cosity, and ¢ is the Emmons parameter (Emmons, 1951)
which depends on the shape and velocity of the turbulent

511

spots. In Egs. (33) and (34) the spot production parameter
no is computed as (Mayle, 1991)

e = 1.5107 "' Tu’/*, (35)

where Tuy :Tule,oo(ule,x/uoo)‘z/ % is the local free-stream

value of Tu. In the presence of a pressure gradient, the cor-
relation (35) for the spot production rate is corrected as

iic = (16),;p PRC, (36)

where (710),p is the production rate for zero pressure gra-
dient (ZPG), Eq. (35), and PRC accounts for the influence
of the pressure gradient through the value of the accelera-
tion parameter K,
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)l—exp(ZXIOGKm)

(474Tu,>”

le

for K, <0,

PRC = (37)

_ 0.5985
1073227k for K. >0,

where Tu,. is the free-stream value of Tu at the leading-
edge section. Eq. (37) has been obtained by Steelant and
Dick (1996) from the data of Blair (1992) and Gostelow
et al. (1994). The Ty, T, and T3 terms in Eq. (30) are de-
rived from the model of Cho and Chung (1992) and are gi-
ven as
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N C]')) au,«
T1 = k Tl'j axj, (38)
kl/z U; 6u,~ 6'}/
T, = P _
2= Cyyp B o Jigti; ij 6);,—’ (39)
k 0y Oy
T, =C3p—— — —. 40
3T oy, oy, 40)

Finally, the blending function, F, based on the correlation
due to Klebanoff for the distribution of y in the direction
normal to the wall, is given as
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k/(Sv)

F = tanh4 T 03
200(1 — y01)*

, (41)

which allows a smooth switch from the model of Steelant
and Dick (1996) close to the wall to that of Cho and Chung
(1992) in the outer region. The values of the coefficients in
the equations above are
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o =1,

C0:17

g, =1,

42
C, = 1.6, (42)

C,=0.16, C;=0.15.

4. Numerical method

The numerical method employed to solve the three-
dimensional RANS and transition model equations is the
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extension to three space dimensions of the two-dimensional
method of Cutrone et al. (2007). The conservation equa-
tions are written in generalized curvilinear coordinates;
an implicit time marching procedure is used in combination
with a preconditioning matrix (Venkateswaran et al., 1992;
Merkle, 1995), premultiplying the pseudo-time derivative,
in order to improve accuracy and efficiency for a wide
range of the Mach number. Using the diagonalization pro-

cedure of Pulliam and Chaussee (1981), it is possible to fac-
torize the implicit operator, so as to allow a standard scalar
alternating direction implicit solution procedure (Buelow
et al., 1997). A cell-centred finite volume space discretiza-
tion is used on a multi-block structured mesh. The third-
order-accurate Steger and Warming (1981) flux vector
splitting scheme is employed to discretize the convective
terms, whereas the viscous terms are discretized by
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second-order-accurate central differences. Characteristic
boundary conditions for the flow variables are imposed
at inflow and outflow points, whereas no-slip and adiabatic
conditions are imposed at walls; k and o are assigned at
inflow points together with y = 0, whilst they are linearly
extrapolated at outflow points. At solid walls, k is set to
zero whereas different conditions have been employed for
o, namely: (i) the homogeneous Neumann condition,
O0w/0n = 0, which was found adequate for model M1 in
the case of attached flows (Walters and Leylek, 2005; Cut-
rone et al., 2007); (ii) the condition proposed by Menter
and Rumsey (1994),

y
o =60—-—, 43
J’5‘1ﬁ ( )

where y,, is the distance of the first cell center from the
wall; (iil) a combination of (i) and (ii), see Section 5.

All results have been obtained using double-precision
arithmetic; the computations are started impulsively from
rest, the turbulence and transition quantities being all set
to zero. A residual drop of eight orders of magnitude for
the conservation-law Egs. (1)-(3) has been required for
convergence.

5. Results

As already mentioned in the Introduction, this work
aims at evaluating the Walters and Leylek (2004) model
for predicting transition in turbomachinery flows. Prelimi-
narily, flows past a flat plate tested at the Rolls-Royce
Applied Science Laboratory wind tunnel with different
free-stream conditions, known as T3L test cases (available

on the web at http://ercoftac.mech.surrey.ac.uk/transition/
cases), have been used to test such a model versus well-doc-
umented two-dimensional transitional separated flows. For
such cases, results have also been obtained using the Suzen
and Huang (2000) model, for comparison.

5.1. T3L test cases

The first test case is one of the experimental tests per-
formed by the ERCOFTAC Special Interest Group (SIG)
on Transition (Savill, 1993a,b): the flow past a flat plate
with a semi-circular leading edge having radius equal to
5 mm, incidence angle and pressure gradient both equal
to zero, and several free-stream conditions. The computa-
tional domain, X, = —0.3m, Xpx =03m, y.,=0,
Ymax = 0.218 m, is shown in Fig. 2 along with a partial view
of the grid at the leading-edge region. Along the lower wall,
upstream of the plate leading-edge, inviscid wall boundary
conditions are imposed, whereas at the plate as well as at

Fig. 15. T3LAI test case: computational domain and partial view of the
grid at the leading-edge region.
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the upper wall the no-slip condition is enforced. The grid is
composed of five blocks and contains about 35,000 cells; a
near-wall clustering allows y* for the first cell as low as
0.01. The three flow conditions provided in Table 1 have
been computed, the free-stream velocity, u.,, Reynolds
number, Re (based on the leading-edge diameter), and tur-
bulence intensity, Tu,, referring to the test section, located
6 mm downstream of the leading-edge. In order to recover
such experimental data, at the inlet section of the computa-
tional domain, the values wuj,, Tu;,, and Ar;, have been
assigned as given in Table 2, which also provides the
numerical (7) and experimental (exp) turbulence length
scales at the test section. A satisfactory agreement between

0.024 T

the computed and experimental decays of the free-stream
turbulence intensity is also obtained, see Figs. 3-5. The
flow always separates near the start of the plate (the end
of the nose), the length of the separation bubble varying
between 2.5 and 3 times the leading-edge diameter, and
transition onset occurs before or just after the reattachment
point; see Table 3, which provides the x-coordinates of the
separation (s), reattachment (r), and transition-onset (to)
points, computed using both models M1 and M2, together
with the numerical results of Papanicolaou and Rodi
(1999). For model M1, the x;, value has been evaluated
according to one of the transition-onset criteria commonly
employed in experimental works, see, e.g., Hoheisel et al.
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(1987), Schlichting (1968): transition onset occurs at the
point where the ratio between the dynamic pressures at a
distance y from the wall and at the edge of the boundary-
layer,

q(xmi}) :p[(X,j/)—p(x,j/) (44)
q(x, 5) p[(x,é) —p(x,é) 7

reaches its minimum along the wall; here y = 1 mm. This
criterion was not necessary for model M2 as well as for
the results of Papanicolaou and Rodi (1999), which deter-
mine the transition onset, directly. The skin friction coeffi-
cients, computed using either model, are compared with the

experimental ones in Figs. 6-8. Model M1 provides ade-
quate results; in particular, it predicts correctly the T3L5
test case where, unlike the other ones, the transition onset
occurs just downstream of the reattachment point, as also
predicted by the results of Papanicolaou and Rodi
(1999). Model M2 is less robust, insofar as it provides re-
sults comparable with those of model M1, except for the
undershoot and overshoot just upstream and downstream
of the reattachment point, respectively, for both cases
T3L2 and T3L3.

A more thorough comparison of the present results with
the experimental ones is shown in Figs. 9-14, which pro-
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Table 4 largest errors are experienced, markedly by model M2 in
Test case T3L3: mesh-refinement study the T3L2 and T3L3 cases. Such errors are likely due to
Grid A Grid B Grid C those relative to the production of the turbulence kinetic
Number of cells 35,000 17,000 9000 energy, k. On one hand, model M1 overpredicts the pro-
Points in the boundary-layer 32 . 23 . 16 ] duction of k near the wall, for case T3L2, and underpre-
Il (1)001 5008 3&10 dicts it near transition for case T3L3, while always
Yn1 . . . 1 1
v (mm) — M1 977 273 26.2 capturing its cc')r'rect profile across the bubble bqth before
x,(mm) — M2 28.0 28.0 300 and after transition onset. This is in agreement with exper-

vide the velocity and turbulence kinetic energy profiles at
different locations along the plate. The agreement is gener-
ally good, except near the reattachment point where the

imental data of Malkiel and Mayle (1996), which show that
the point of maximum intermittency, and hence that of
maximum turbulence production, coincides with the point
of maximum vorticity, corresponding to the center of the
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Fig. 21. Mesh-refinement study for model M1: skin friction coefficient distributions at the wall for test case T3L3.
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separation bubble. On the other hand, model M2 is not
able to predict the pre-transitional kinetic energy produc-
tion, due to its on/off transition-onset criterion; conse-
quently, the corresponding turbulence kinetic energy
profiles differ from zero only downstream of transition
onset and are markedly less accurate that those provided
by model M1.

It is noteworthy that model M2 is not able to provide
separation when used in conjunction with Menter’s wall
boundary condition for w in the entire flow-field, so that
the mixed condition has been employed, using Menter’s
Eq. (43) only after the reattachment point and the homoge-
neous Neumann condition elsewhere. Such a condition was
used also for model M1. However, it has been observed
that the results of model M1 are only slightly dependent
on the condition used for w at walls. In particular, for
the test case T3L3, the reattachment point obtained using
either Menter’s boundary condition or the Neumann one
is equal to 28.2 mm, only about 1.8% different with respect
to the value obtained using the mixed condition.

The T3LA1 test case has been also considered, which
differs from the previous ones only for the presence of an
upper wall (uw), imposing a non-zero pressure gradient
along the flat plate. Re = 3293 and the computational
domain, xpi, = —0.3m, Xpax = 1M, Yo =0, Viaw = Vaws
is shown in Fig. 15 along with a partial view of the grid
at the leading-edge region. The grid is composed of five
blocks and contains about 38,000 cells; a near-wall cluster-
ing allows y* for the first cell as low as 0.01. The turbulence
intensity and length scale imposed at the inlet points are
equal to 3.9% and 14.1 mm, which allowed a good agree-
ment between the computed and the experimental free-
stream turbulence intensity decays, see Fig. 16. Figs. 17
and 18 provide a comparison between the computed and
experimental pressure and skin friction coefficient distribu-

tions along the plate, respectively, showing a good agree-
ment. The computed separation, reattachment, and
transition-onset points are equal to x,=4.7mm,
xr =251 mm, and x, = 15.0 mm, for model MI, and
xs = 4.6 mm, x, = 26.5 mm, and x,, = 21.2 mm (17.5 mm,
if using Eq. (44)), for model M2. Figs. 19 and 20 finally
provide the velocity and turbulence kinetic energy profiles:
all results confirm those of the previous test cases.
Finally, a mesh-refinement study has been performed in
order to demonstrate that all of the results presented so far
can be considered to be grid-converged within plotting
accuracy. In order to save computational effort, the
mesh-refinement study has been performed only for one
test case (T3L3) and coarsening twice the initial mesh (grid
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Fig. 23. T106 test case: computational domain and partial view of the grid
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A). Table 4 provides the main features of the grids as well
as the computed locations of the reattachment point,
whereas Figs. 21 and 22 provide a comparison of the skin
friction coefficient distributions. It appears that already
grid B can be considered adequate for the present compu-
tations, especially for model M1, which again proves to be
more robust than model M2.

From all results, it appears that model M1 is more reli-
able and robust than model M2. Furthermore, it is also
easier to apply to complex geometries and three space
dimensions, insofar as it does not require to evaluate any
nonlocal parameter such as a boundary-layer thickness.
Therefore, model M1 appears as the ideal candidate for

predicting transition in two- and three-dimensional sepa-
rated flows of turbomachinery interest, and deserves fur-
ther testing, as done in the following.

5.2. Two-dimensional flow through the T106 turbine cascade

The two-dimensional flow through the T106 turbine cas-
cade has been computed to validate the transition model
M1 versus a turbomachinery flow with separation-induced
transition (Hoheisel et al., 1987). The flow is subsonic, with
isentropic exit Mach number equal to 0.59, inlet flow angle
equal to 37.7°, and inlet turbulence length scale equal to
0.02¢, ¢ being the chord length, equal to 100 mm. Two
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Fig. 25. T106 test case, Re = 5 x 10°: separation, transition-onset, and reattachment points versus inlet turbulence intensity.
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values of the Reynolds number, based on ¢ and on the exit
conditions, have been considered, namely, 5 x 10° and
11 x 10°. Experiments by Hoheisel et al. (1987) indicate
that, for the lower Re, separated-flow transition occurs
for values of the inlet turbulence intensity Tu in the range
0.8% < Tu < 7.1%, whereas, for the higher Re, separated-
flow transition occurs only for Tu < 3%, an attached
bypass transition being observed for Tu > 3%.

The inlet and outlet sections of the computational
domain are located at a distance equal to s and 0.875s
upstream of the leading-edge and downstream of the trail-
ing-edge sections, respectively, s being the cascade pitch,
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equal to 79.9 mm. The computational domain is shown
in Fig. 23 along with a partial view of the grid at the lead-
ing- and trailing-edge regions. The grid is composed of 24
blocks and contains about 68,800 cells; a near-wall cluster-
ing allows y* for the first cell as low as 0.05. This grid accu-
rately captures the features of the present flow, as already
shown by De Palma (2002). The transition-onset location
is evaluated according to Eq. (44), with = 0.15 mm.

For Re = 5 x 10°, Fig. 24 provides the experimental and
computed distributions of the nondimensional pressure
along the blade profile. The numerical results, independent
of Tu, agree well with the experimental ones, but overesti-
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Fig. 26. T106 test case, Re = 5 x 10°: momentum thickness distributions along the suction side.
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mate the pressure plateau due to the separation bubble at
the rear suction side. Fig. 25 provides the experimental
and numerical values of the separation, transition-onset
and reattachment points versus the inlet turbulence inten-
sity. The agreement of the two sets of data is satisfactory,
the separation and transition-onset points being slightly
over-predicted for the two highest values of Tu. Fig. 26
provides the distributions of the boundary-layer momen-
tum thickness along the blade suction side. The flow
remains laminar over a large portion of the blade suction
side, a laminar separation bubble taking place at about

70-80% of the chord, depending on the inlet Tu value;
transition occurs at the edge of the separation bubble,
and a fully turbulent flow reattaches at x/c = 0.94. The
computed and experimental boundary-layer velocity pro-
files at five locations along the suction side are finally given
in Fig. 27. The velocity profiles at x/c = 0.75 indicate a ten-
dency toward separation, which is evident at x/c = 0.85.
The numerical results for the last two locations do not
compare particularly well with the experimental data:
at x/c = 0.85, the computed profiles are weakly depen-
dent on Tu and appear closer to the experimental data

c
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— Exp. data
o Model M1: separation point

o Model M1: transition onset
o Model M1: reattachment point
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=)
W
I

0 | |

0.8 1 2

3 4 5 7 10

Freestream turbulence intensity Tu, %

Fig. 28. T106 test case, Re = 11 x 10°: separation, transition-onset, and reattachment points versus inlet turbulence intensity.
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Fig. 29. T106 3D test case: pressure coefficient distributions at mid-span.
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corresponding to Tu = 0.8%; at x/c = 0.95, the behaviour
is opposite and the computed profiles are not fully turbu-
lent, unlike the experimental ones. However, it is somewhat
surprising that the experiments show a well developed
attached turbulent velocity profile at x/c = 0.95, reattach-
ment taking place at x/c = 0.94.

For Re = 11 x 10°, two values of Tu have been consid-
ered, namely, 2% and 7%. Also for such cases, model M1
is able to predict the separated-flow transition for the lower
Tu, as shown in Fig. 28, although less accurately than in
the previous case; more importantly, for the higher Tu,
the model correctly predicts that there is no separation
and an attached bypass transition occurs.
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5.3. Three-dimensional flow through the T106 turbine linear
cascade

The three-dimensional flow through the same linear
T106 turbine cascade has been finally considered to vali-
date the transition model M1 versus a complex turboma-
chinery flow involving separation, transition, and their
interactions with secondary flows, a very challenging test
for transitional-flow solvers (De Palma, 2002; Hildebrandt
and Fottner, 1999). The flow is subsonic with: isentropic
exit Mach number equal to 0.59, inlet flow angle equal to
37.7°, Reynolds number, based on ¢ and on the exit condi-
tions, equal to 5 x 10°, and inlet turbulence length scale

EE 09
= T
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Fig. 31. T106 3D test case: pitch-averaged flow angle variations along the span downstream of the cascade.
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equal to 0.02¢. The inlet turbulence intensity has been set
equal to 5.8% and the measured total-pressure spanwise
profile has been prescribed at inlet points, in order to com-
pare the results with the experimental data of Hildebrandt
and Fottner (1999).

The inlet and outlet sections of the computational
domain are located like in the previous test case and the
third dimension has been simulated from hub to mid-span
(h = 150 mm) due to symmetry. Three grids with 24 blocks
have obtained by stacking a two-dimensional grid in the
blade passage non-uniformly in the spanwise direction.
The grids contain about 14,600 x 40 cells (grid A),
36,500 x 48 cells (grid B), and 14,600 x 80 (grid C),
respectively, so as to have values of y* for the first cell at
the blade wall about equal to 0.2, 0.1, and 0.2, and of z*
for the first cell at the hub equal to 1, 0.9 and 0.25, respec-
tively. The computed nondimensional pressure distribu-

tions at the mid-span and sidewall sections are compared
with the experimental ones in Figs. 29 and 30, respectively.
The behaviour at mid-span, where the flow can be consid-
ered two-dimensional, recovers that of Fig. 24, and the
agreement at the sidewall, where complex three-dimen-
sional features are present, is remarkable indeed. In both
cases the numerical results are just about grid-converged.
In order to assess the capability of the model to predict
secondary flows, the pitchwise averages of the exit flow
angle and of the loss coefficient at the plane x/c, = 1.5
have been computed and compared with the experimental
data in Figs. 31 and 32, respectively. Considering the com-
plexity of the flow, the grid dependency is small and the
agreement is good. The details of the flow downstream of
the cascade are given in Fig. 33, which provides the con-
tours of the loss coefficient at the plane x/c,, = 1.5: a large
two-dimensional flow region extends from mid-span
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Fig. 32. T106 3D test case: pitch-averaged loss coefficient variations along the span downstream of the cascade.
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Fig. 34. T106 3D test case: limiting streamlines on the suction surface.

(h =150 mm) to about 75 mm from the sidewall. Three
different loss cores (LC) are clearly seen (Hildebrandt and
Fottner, 1999). The main one, LCI, originates between
the separation lines of the suction side branch of the horse-
shoe vortex and of the passage vortex; LC2 is directly
related to the passage vortex; and LC3 is due to the corner
vortex, which is induced by the passage vortex and counter-
rotates with respect to it. All such features are well cap-
tured by the numerical simulations; more importantly,
the losses computed on the three grids are in good agree-
ment among themselves as well as with the experimental
data. This is a very important result, insofar as numerical
simulations employing a RANS approach and a transition
model usually overpredict losses and are very sensitive to
the mesh (Hildebrandt and Fottner, 1999; De Palma,
2002). Finally, Fig. 34 provides the limiting streamlines
on the blade suction side (computed using grid C), showing
that a separation bubble is present at the aft suction surface
of the blade, from mid-span to about 75 mm, consistently
with the loss coefficient contours.

6. Conclusions

In this work, transition in two- and three-dimensional
separated flows has been studied numerically in order to
assess the performance of the single-point transition model
recently proposed by Walters and Leylek (2004). This
model, called M1, is based on the computation of the
pre-transitional stream-wise boundary-layer fluctuations
induced by the free-stream turbulence, through the solu-
tion of an additional transport equation for the laminar
kinetic energy. Unlike standard intermittency transport
models, M1 does not require to evaluate any nonlocal
parameter and is thus suitable for computing complex
three-dimensional flows. Firstly, model M1 as well as a sec-
ond state-of-the-art model (M2), combining a transition-

onset correlation with an intermittency transport equation,
have been tested versus well-documented incompressible
flows past a flat plate with semi-circular leading edge,
namely, tests T3L2, T3L3, T3LS5, and T3LA1 of ERCOF-
TAC, the last one being characterized by a non-zero pres-
sure gradient. In all cases, model M1 has proven itself more
reliable and accurate than its competitor. Then, it has been
tested versus the two- and three-dimensional flows through
the T106 linear turbine cascade, for which detailed experi-
mental results are available. Also for such very complex
and challenging flows, model M1 has proven to be robust
and accurate. Model M1 is thus a suitable candidate to
be a crucial ingredient within a state-of-the-art CFD tool
for transitional turbomachinery flows based upon the
RANS equations and the low-Reynolds-number £ — w tur-
bulence model.
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